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1. INTRODUCTION

In this chapter we consider two adaptive finite element techniques for

*" parabolic partial differential equations (PDEs) that are based on using error

* estimates to control mesh refinement. One technique is a method of lines

' (MOL) approach that uses a Galerkin method to discretize the PDEs in space

and implicit multi-step integration in time. Spatial elements are added and

*deleted in regions of high and low error and are all advanced with the same

sequence of varying time steps. The second technique is a local refinement

" method (LRM) that uses Galerkin ipproximations in both space and time. Fine

*grids of space-time elements are added to coarser grids and the problem is

- recursively solved in regions of high error.

In describing these methods we shall not concentrate on algorithmic

- details or provide extensive numerical results. The MOL has evolved over the

past few years, and readers interested in examining related theory and more

extensive experiments may wish to see Refs. 7, 8, and 9. The LRM has been

studied for a much shorter period of time, but readers interested in directly

distribution unlimited*
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related methods may wish to see -Rehf 4, 5, 6, and 12. There is an ever

expanding number of adaptive methods for time-dependent PDEs appearing in

.. the literature. We refer a reader unfamiliar with this area especially to the

other chapters of this text and to Ref. 2.

Our intention is to highlight some of the difficulties faced by many

adaptive methods for time-dependent PDEs by comparing and contrasting the

MOL and LRM in a simple manner. These methods differ in many respects,

but they also have some similiar features.

Both are applied to m-dimensional vector systems of PDEs of the form

Lu := ut f(x,t,upux) [D(x,t,u)ux]x = 0

a < x < b, 0< t; ST (19.1)

with appropriate initial and separated boundary conditions. Such systems

*" model many physical phenomena, including heat conduction, flame propagation

in combustion, signal transmission in nerves, and contaminant transport in

porous media.

In approximating the solution of Eq. (19.1), an attempt is made in both

* methods to efficiently measure and control the accuracy of the computations.

- The methods' basic objectives are:

i• Obtain an accurate estimate E(t) of I e(t)ll for all t t (0,T), where

e is the total computational error and I is a spatial norm for the

MOL and a spatial norm with local temporal variations for the LRM.

ii. For a given tolerance TOL > 0, adjust the space and time

discretizations so that I Ie(t)I I S TOL for all t c (0,T).

* .o.
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iii. Keep total computational cost and storage overhead low.

*The MOL and LRM adopt the same general approach for resolving the conflict

that exists between the third and the first two objectives. Error estimates

are formed from indicators, which are derived from local values of the

computed solution and are discarded as integration progresses on (a,b) x

(0,T). The error control strategies are based on direct control of the error

estimates and on relatively little additional information. One could thus expect

this approach to be less successful in achieving the first two objectives than

a method which integrates auxiliary equations for the error or which uses

data stored in previous integrations, but more successful in achieving the

third. Alternatively, an approach not employing error estimates and an error

tolerance refinement criterion like those here might be more successful in

maximizing accuracy per cost or storage, but it would have no direct control

over the level of accuracy.

Both of the methods considered employ "coarse" space and time grids

Ax :: ( = X 0 < X < ... < X N  b) (19.2)

*" and

At : 0 t0 < t 1 < < tK T) (19.3)

to guide the mesh refinement process. These grids are uniform and are

chosen a priori to reflect expected "global" scales on which the solution of

Eq. (19.1) will vary. Integration in the MOL and LRM consists of sequential

application of a core algorithm for Eq. (19.1) on the space-time strips

"'-{(a,blx(tW t k+)k_0,...,K-1 The core algorithms differ significantly in

J.o



form.

The MOL algorithm for (ab)x(tkotk.l) begins at tk with a space grid 6

containing Ax  and with solution values at the nodes of 6. Spatial

discretization of Eq. (19.1) is completed with a standard piecewise-linear

finite element formulation, which results in an ordinary differential equation

initial value problem (ODE-IVP) for solution values on lines extending in time

" from the nodes of 6. The lines are fixed - i.e. spatial mesh refinement does

. not occur on (tk#tk1). They are discretized with variable step sizes

( a6t ii., 2  , which are sequentially chosen to control the local time

* discretization errors arising in the numerical integration of the ODE-IVP.

*Time integration and step-size selection are carried out by the variable-order

- backward differentiation formula algorithm implemented in the LSODI

* subroutine package of Hindmarsh and Painter (cf. Refs. 13,14). For our

-" purposes, it suffices to consider LSODI in one of its simplest modes of

- operation: the implicit Euler method is used in conjunction with a modified

" Newton method to advance one time step 6t i , the local error is estimated with

• function values at t and t - 8t i , and 6t i and the criterion for stopping the

Newton iteration depend on an input tolerance tol (chosen in the MOL to be

- much smaller than TOL in objective ii).

When time tk,1 is reached, the MOL core algorithm is completed with

.. ' one to three operations. First, the space discretization error at tk.1 is

estimated and a decision is made as to whether 6 should be changed. If mesh

modification occurs, some elements are uniformly refined and others are

coalesced, with the resulting element distribution determined by the

distribution of local space discretization error indicators at time tk.1 and by

certain global information having dimension proportional to that of the coarse

%°%
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grid A . The final operation is determination of new (initial) solution data if
JX

mesh modification has occurred.

In contrast to the MOL, the LRM algorithm for (a,b)i(tk,tk.1 ) does not

decompose space and time discretization into two distinct phases; it uses

different time discretizations in different regions of space; and it is recursive

in nature, with reintegration carried out over space-time regions of high

error. The LRM core algorithm begins with spatial solution values at time tk

and a rectangular space-time net, defined by tk' tk+1 and the coarse space

grid Ax . Discretization of Eq. (19.1) initially is carried out using

" piecewise-bilinear space-time finite elements on this net. This results in a

system of nonlinear algebraic equations which are solved via Newton's method.

Using a space-time discretization error estimator to flag regions of high

error, some of the elements in the original net are uniformly refined, and Eq.

(19.1) is locally reintegrated on these refined elements. This process is

recursively continued until error tolerances are satisfied on the finest grids.

* The core algorithm terminates by prescribing solution data at time tk+1. An

". example of a sequence of grids that might be produced by the LRM core

. algorithm are pictured in Figure 1.

In the remainder of this chapter, we examine the MOL (Section 2) and

' the LRM (Section 3) more closely and further compare the two (Section 4).

. The comparisons presented here are qualitative. Quantitative comparison of

the two methods could be very misleading. Different norms are used in the

. two; structural dissimilarities diminish the value of computational work models

based on number of elements, time steps or function evaluations; and

comparison of central processing times would reflect implementation styles and

4- computing environments which we do not at this time wish to emphasize. We

...
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wish to call attention to issues rather than what might be viewed as

intermediate solutions.

What are some of the important issues arising in these or any other

adaptive methods of similar type for time-dependent PDEs? To a certain

- extent, the important issues all arise from the fact that a one-parameter

" family of problems must be solved, in contrast to the situation for adaptive

* methods for linear elliptic boundary value problems. Data structures must

• "support refinement and derefinement, measures must be taken to prevent the

propagation of errors, control strategies must take care not to introduce

- instabilities through assignment of initial and boundary data at mesh

interfaces, and the role of prediction could be crucial to the success of a

method.

In Section 3 we present a data structure for the LRM that is different

from others described in this text. The data structure used in the MOL is

quite simple and is not discussed. Readers interested in a data structure for

two-dimensional problems of similar type which supports derefinement and

- utilizes nested dissection are referred to in Ref. 11. In Section 2, we look

- closely at one estimator for the MOL and some of the factors that affect its

performance. The role of prediction is most germaine to the MOL, since

* integration in the MOL proceeds only in the positive time direction. We

discuss how to incorporate pattern recognition ideas in the prediction process

in order to control errors in a stable manner. Assignment of data at mesh

interfaces is important in both methods, but most important in the LRM. For

this reason, this topic is emphasized in Section 3.



2. THE METHOD OF LINES

2.1. Preliminaries

For simplicity, notation will be introduced only for a scalar model

version of Eq. (19.1):

"-u t * cu - (dux~ f = 0 ,(19.4)
t: x x

where f = f(x,t,u), c and d are constant with d > 0, and where the solution

u satisfies zero Dirichlet conditions at the spatial end points a and b. Let

(ax 0 < X ... n b) (19.5)

-' denote an arbitrary space grid with local grid sizes

h x. - , for j = 1, 2, n (19.6)

- and S(6) be the finite element space of continuous functions which vanish at

"*':: a and b and are linear on each (xj 1lXj).

The principal input for the MOL at time to = 0 consists of

*.- i. a space grid 6o whose nodes include those of the coarse grid Ax,

ii. course uniform space and time grids Ax and at (cf. Eqs. (19.2,

3)),

* iii. a space discretization error tolerance TOL > 0, and

" iv. a local time discretization error tolerance tol > 0.

The principal output from the method consists of

i. error estimates E(tk))k : 1, 2, ... , K

ii. times(tp} C (t k ) at which space mesh modification occurs,

iii.corresponding space grids (6 p, which each contain Ax, and
4- p'

4-'
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iv.an approximation U of u which is in S(Op) for t ' Itp,t.t), where

U(,t p) is obtained by linear interpolation.

There typically are a great many ODE-IVP integration time steps taken

on each interval (tktk1), and many of these intervals in each (tptp*)

The ODE time step size sequence generated by LSODI generally increases on

each (tp ,t p 1 ), and it increases most rapidly just after being restarted at tp

when LSODI is permitted to choose the initial step size. This step size

sequence depends on the value of tol, which is chosen a priori to be small

with respect to TOL (say 0.01TOL). The question of how small it must be in

order for global time and space discretization errors to be comparable is very

. difficult to answer and is not addressed here. For our discussions, tol is

assumed to be such that errors due to the space grids (6 dominate -hose

due to time discretization. The estimates (E(tk)) are space discretization

- error estimates which are assumed also to provide reasonable estimates of the

total error.

There are two refinement decisions which are made for each space grid

in the MOL: when to change the grid and how to construct a new grid. The

strategy for selecting the times (t I is quite simple. Time tk is a

"regridding" time if and only if E(tk) exceeds a present threshold, which is

typically 0.9TOL. Mesh modification is carried out so that E(t), for t just

beyond t , is lowered to a smaller value TTOL.' The next regridding time will

* thus occur when E has grown by a factor of at least 0.9/r. While T is

normally adjusted during PDE integration, it will be considered as fixed (0.7

.. say) when it reenters the discussion. One should note that by allowing the

error to grow and using a fixed stopping criterion (e.g., 0.9TOL), it is

assumed that the PDEs being solved are sufficiently dissipative, and that the



error can be "recovered" in the future via mesh refinement.

2.2. Error Estimation

"" The accuracy measure of interest for the model problem (19.4) is

I IIJe(t)III = (I de2 (x,t)dx] (19.7)
a

Letting 6 of the form (19.5,6) be the space grid in use at time t, the

estimate E(t) of Ille(t)III is

E(t) E t)2 (19.8)
j=1 

'

where the indicators (YO(t)} are defined by

M: t = (h /12d)f I [Ut(x,t) + CU (x,t) f(x,t,U(x,t)) . (19.9)

.
t x j 1

The indicators provide information on the local spatial accuracy of the method

- and on the local spatial behavior of higher solution derivatives appearing in

the leading terms of an error expansion. Recognizing the integrand above as

the residual of the PDE (19.4) (neglecting discontinuities at the nodes of 6),

we can extract this latter information by computing values of the function

2 3 1/3w(x,t) [12nj/h] ; x t (x j-,1 j) (19.10)

2 1/3
S[du xx (X, t)J

The accuracy of this local information is generally worse than the

averaged global spatial information given by E(t). The accuracy or

performance of E can be assessed with the effectivity index

0(t) = E(t)/..e(t)l.. (19.11)

q*h



Theory and practice suggest that max 18(t) - 11 - 0 as max IIle(t)lII - 0
t t -

for a broad class of problems, with order and rate of convergence depending

on many factors. Problem-based factors include the diffusivity of the system

* (i.e., the size of d), the relative strength of convection (i.e., the size of

c/d), and the relative strength of reaction or source terms (i.e., the size of

" f /d). Mesh-based factors include the regularity of the space grids and the
*" U

frequency with which they are changed. In any single PDE integration from

t to T, the accumulation in time of pollution effects related to any one of

these factors can degrade the performance of E, nullifying the success of

*subsequent regriddings in the same run. And this can happen even if each

ODE-IVP is solved exactly.

We illustrate how an inappropriate MOL refinement strategy can destroy

- the error control it attempts to achieve by solving the simple forced linear

*heat equation of Example 2 in Section 3. Two runs were made: one with 200

- fixed uniform elements and the other where regridding was forced to occur

every 0.001 time units. In the latter run, a local error indicator equilibration

strategy was used to regrid and in both, computation of the load vector and

time integration was very nearly exact.

With 200 fixed elements, the relative Ill I l - error and the effectivity

index varied only slightly from the values 0.051 and 1.002, respectively,

during the time the solution front was entirely within the space interval

(0,1). Results taken from the latter run are shown in Figure 2. Il lell and

8 oscillate in time, but more importantly, they become worse as time passes. 8

- values in the range pictured in the lower graph of Figure 2 are certainly

reasonable, but compare them with those from the less accurate (!) fixed

element run.

.. . •....... ................... +°... . +. . •. . . ...... •. ,.+. . .. . . .°.......* .. + °.. .* .
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Figure 2. Relative error (top) and effectivity index, 8 E/j I let 11,
(bottom) for the heat conduction problem described in Example 2.



The onset of instability we see is the result of regridding too

frequently with respect to the sizes and distributions of the spatial elements

" and would result with any reasonable assigned initial data when regridding

occurs. By fixing 0.001 as the time between regriddings, requesting more

accuracy (i.e., smaller hi), and using the same equidistribution strategy in

- another experiment, the appearance of instability went away, as predicted by

*. theory.

- -The risk of introducing undetected instabilities is taken by any method

. which employs purely local strategies or whose performance depends strongly

.- on many input parameters. Such instabilities have been reported for moving

*finite element schemes in Refs. 10 and 17. In the MOL described in this

• chapter, this risk is reduced through the use of the course grids Ax and At,

which would remain fixed if a problem were solved with many error tolerances

(TOL q,tolqq=1, 2 .... . The role of At was briefly explained at the end of

Section 2.1. The role of Ax is best understood after examining the grid

properties which change when mesh modification occurs.

- 2.3. Grid Shape and Intensity

Two properties of the grid 6 are changed when it undergoes refinement

and derefinement: shape and intensity. Introducing the grid function

1/h , x i (x ,j= 1, 2, .... n-.- l hi ( j. 1  xj)

:=) (19.12)

.' (/hi * 1/h )/2 , x = xj , = 1, 2, .. ,n-1
j j*1 J

we can define the shape of 8 via the graph of the function

a R(zZ 2) = 18(Z1 )/ 8(z2) ; z1, z2 t (a,b) (19.13)

•-7 .



* and the intensity of 6 as

b
18 : 1 4 a(x)dx .(19.14)

a

Notions related to shape and intensity are often used to describe grids for

linear elliptic PDEs (cf. Ref. 3), but seldom are used in local refinement

* strategies to construct them, since both shape and intensity necessarily

* change. It is easily checked that 8 has intensity 16 n, and that grid

intensity is unchanged if the same number of elements are both added and

* removed to change a grid's shape.

All sequential algorithms for time-dependent or parameterized nonlinear

- PDEs must select grid shapes which will work in the future - and the

- "future" for such algorithms is generally much farther ahead of the present

* than for which local extrapolations can be used. The example of the previous

section showed how errors could grow undetected if one type of local

* extrapolation was used to predict appropriate grid shapes. What was not

-~ shown was the cost of such an algorithm. In practice, the expense of

* frequently interrupting the time integrator to construct new grids can

* completely overshadow a loss of accuracy.

The strategy used to construct a grid here is to attack the grid shape

* problem directly. A model grid function C is first explicitly constructed. It

then is magnified (multiplied by an iteratively chosen constant) to yield a

model grid intensity I defined as in (19.14). Lastly, refinement and

derefinement are carried out so that the resulting grid has a shape closely

resembling that of & (defined as in (19.12)), with the total number of

-elements approximately equal to 1. More specific details of the actual

* construction can be found in Ref. 4.



Let us briefly see how the shape and intensity of a grid 6, constructed

at time t" and retained until time t*, affect accuracy and cost on (t ,t*). To

this end, we can use the functions w and &6 (cf. (19.10), (19.12)) in the

. definition (19.8) of E to get

E2(t) = (1/12)1 [w3 (xt)/2(x)]W dx , t a (t',t) (19.15)

6

a

Recalling from Section 2.1 that 6 was constructed so that E(t) = rTOL, it is

noted that the least intensity (number of elements) required to do this would

have been that of the grid whose shape coincides with the shape of w(*,t').

This is the local error equidistributing grid, obtained by minimizing the

right-hand side of (19.15) at t = t" in a manner similar to that described in

Ref. 3. Ignoring the costs associated with frequent regridding, this grid

might be described as the high risk, low cost alternative, since error control

could be lost, but the ODE-IVP for t Z t would have the smallest possible

size. On the other hand, a uniform grid which lowered E(t) to the same

value might be called the low risk, high cost alternative, since the maximum

intensity of all reasonable grids would be required, but unpredictable changes

in the shape of w(o,t) would be accounted for, and E would not suddenly

exceed the threshold value 0.9TOL. The present method for selecting a model

grid function & at t tries to balance risk and cost in a general way by using

a small amount of information collected at t and t on the coarse space grid

x

2.4. Pattern Recognition and Grid Shape Prediction

In order to predict the future, all reasonable algorithms of the present

type must employ heuristics, since accurate, inexpensively obtained local

* information just does not exist. These are usually justified using physical

o - .



*reasoning or via global simulations of local mathematical expansions. If such

prediction processes can ever be quantitatively assessed, compared, and

justified in a general way, the first step may be to see them for what they

-. are - pattern recognition processes. Such a process consists of three

(generally nondistinct) stages:

Representation - reduction of (perhaps "noisy") data into a convenient

and invariant form,

Feature Extraction - relevant measurements from the reduced data, and

Classification - decisions made by comparing feature values in an

attempt to improve recognition or to avoid misrecognition.

Many adaptive strategies for nonlinear elliptic and time-dependent PDEs

*incorporate these stages in one form or another, including those described in

6 and 16.

The "pattern" we wish to predict (or recognize) here is the shape of

the function

w(x) : max + - w(x,t) (19.16)t c [t ,tAT]

where AT is unknown, but is comparable with t t The attempt to do so
consists of constructing a C which majorizes w(,t*) and has the shape of w.

Further reasoning for this choice can be found in Ref. 7.

In order to do this, the number N of "macro" elements in the course

grid Ax is taken to be an integer multiple of 4, and A is treated as a 3-levelx x
grid, whose N/4 distinct level 1 macro elements each have size 4H and contain

5m~**
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2 level 2 macro elements having size 2H each and 4 level 3 macro elements

having size H each. The size H (4H) is related to the maximum (minimum)

risk of losing control over II ejI I that one is a priori willing to take and the

minimum (maximum) price one is willing to pay to keep it. The algorithm tries

to manage risk and cost within this range on each level 1 "macro" element (X,

X*4H) by first reducing data - The many pieces of data defining w(G,t ) on

X, X4H) are replaced by 3 piecewise constant functions (W (,t 1}u=1,2,3'

where W (-,t ) equals the maximum of w(o,t ) on each of the level u macro

* elements contained in X, X'4H). In a similar manner, (WU(Ot')} -1,2,3 were

computed and saved.

In solving many parabolic problems, it has been observed that there

* often is a correlation, on some scale, between spatial differences in w(e,t )

and the way w subsequently grows in time. The algorithm checks if this was

the case on (X, X*4H)x(t-,t*) by extracting features - Three measurements

" are taken:

"-" X 4H

MW = I 1W3(x,t) - W (x,t')l dx , u : 1, 2, 3 . (19.17)

X I

The next step is to classify on (X, X4H) - An active level * is

chosen as that for which M(O*) is the minimum of the three feature values. If

3, either w did not grow on (X, X*4H)x(tt), or spatial differences at

t were not the source of its growth. If IL = 2 (1), then either a clear

correlation exists on the scale 2H (4H), or w is evolving in a way which is

unpredictable on any scale finer than this.

The final step is to decrease the dependence of the selection process on

the geometry of the input macro grid Ax and to actually construct C;. A macro

subgrid consisting of the boundary nodes of every level 1 element and the
t.m

* - .% *.-* *. -*.
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boundary nodes of every active level 2 or 3 element is formed (e.g., if =

2 for some (X X*4H), then X*2H is in the subgrid). 4 is then taken to be

the piecewise-linear function on the subgrid whose j th nodal value is equal

to the maximum of w(e,t ) between the j - 1 st and j + 1 st subgrid nodes.

Figures 3 a and b illustrate how & was constructed in two simulations in

which w was an exactly known unimodal function moving to the right. If such

a w arose in an application of the MOL, the (implicit) prediction of movement

would be carried over to the now spatial grid at t via h(x) - 1/ct(x) for all

x s (a,b] and some constant c > 0.

The pattern recognition ideas described above have been applied to

several problems which demonstrate that the implicit shape prediction behaves

in a stable manner. For some computational results see Ref. 7.

3. THE LOCAL REFINEMENT METHOD

The local refinement method is recursive and we begin by describing

the discretization of Eq. (19.1) on an arbitrary strip g < x < 5, p < t < q.

A finite element-Galerkin method is used with a uniform grid of n rectangular

elements of size (0 - a)/n by (q - p). We refer to this grid as

R(a,6,p,q,n,F,S), where F and S are pointers to the father and son grids

discussed later.

We generate the discrete system on R(a,6,p,q,n,F,S) by approximating

u by U(xt) and selecting test functions V(x,t), where U and V are elements

of a space of C' bilinear polynomials with respect to the grid R. We then

take the inner product of Eq. (19.1) and V, replace u by U, and integrate

any diffusive terms by parts to obtain

4'%
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Figure 3. Prediction of model grid function at time t*



I R t VTf(x,t,UU )  VTD(x,t,U)UxIdxdt

- V T D(x,t,U)U = 0 . (19.18)
p 

a

Equation (19.18) must vanish for all bilinear functions V on the grid R. The

integrals are approximated using a four-point Gauss quadrature rule and the

* resulting nonlinear system is solved by Newton iteration. Appropriate initial

*. and boundary conditions for (19.18) are discussed later in this section.

We describe our local refinement procedure for solving problem (19.1,

* 18) for one time step (tk,tk+1) on a coarse grid with N elements, i.e, on

R(Gb,tk,tk+l N,O,S) (where the pointer F = 0 signifies that this grid has no

father). To solve this problem we simply call the procedure "locref" with the

arguments R(a,b,tk,tk.1,N,O,s), tol, tsub for each coarse grid time interval.

. A pseudo-PASCAL description of the procedure "locref" is shown in Figure 4.

procedure locref (R(u,S,p,q,n,F,S), tol, tsub)
begin

Solve the finite element equations (19.18) on R(t,,p,q,n,F,S);
Estimate the error on R(s,O,p,q,n,F,S);
if error > tol then

begin
calculate where error > tol and return the son grids;
for j :z 1 to tsub do

for i := 1 to number of sons do
begin

" p~j] : p + Qj-1)*(q-p)/tsub;

q[j] := p[j] + (q-p)/tsub;
-ocref (R(s[i],O[i],p[j],q[jj,n[i],

R(a,B,p,q,n, F,S),S[i] ,tol,tsub)
end

end
end;

Figure 4. Algorithm for local refinement solution of (19.1, 18) on
R(m,B,p,q,n,F,S) with an error tolerance of tol and dividing the local
time step by tsub each time the error test is not satisfied.



The recursive algorithm locref sets up a tree structure of. grids with

R(a,b,tktklIN,0,S) being the root node and with the solution being

generated by a preorder traversal of the tree at each local time step. For

example, if the root grid is refined to give two subgrids and the time step is

halved, then the problem is solved on the first subgrid on its first time step,

then on the second subgrid on the same time step, then this procedure is

repeated for the second time step (cf. Figure 1). The error is estimated by

Richardson extrapolation, i.e., the problem is solved twice, once on a grid

with half the space step and again on a grid with half the time step. The

three solutions that are obtained at each original grid point are used to

generate an error estimate. If this pointwise estimate exceeds the tolerance

". "tol", finer grids are added as leaf nodes to the tree. This procedure is

4,6similar to one used by Berger . Note that tol includes both the temporal

and spatial components of the discretization error. Richardson extrapolation is

a simple procedure to implement since it uses the same finite element software

as the solution. However, it is expensive and the approach used in the MOL

seems simpler for finding the spatial component of the error. The temporal

error could be estimated in the same manner as done with ODE software

(e.g., LSODI); however, an appropriate relationship between temporal and

spatial errors would have to be developed.

A problem common to both the MOL and LRM is the development of

initial conditions when refining. In addition, the LRM approach needs internal

boundary conditions on any grid where a 0 a or A 0 b. This is a difficult

and crucial problem that is discussed for explicit finite difference methods by

4 5Berger4; however, it is largely unanswered for finite element applications.

As we subsequently show in Example 1, instabilities or incorrect solutions can

result if inappropriate conditions are specified.

.* - - --1' o " 4 ' " - - . •l " • . . . q ' . . " ,. ' . " ' ., ''' . ' . "- . .. . . . . . ..



In the LRM approach, initial conditions were obtained by saving the

fine grid data at the end of each time step down to a given level X in the

tree. Initial conditions for finer grids were obtained by interpolation. Each

grid in the first I. levels either has a linked list of the initial data directly

associated with it or uses an initial data list of an ancestor grid. To find the

value of the solution at some new initial point, the coordinate of that point is

sequentially compared to values in the linked list until an interval containing

the point is found so that interpolation can be used. We used either

piecewise-linear interpolation or piecewise parabolic interpolation with shape

preserving splines developed by McLaughlin 1 5 . We found some minor

differences between linear and parabolic interpolation, but not enough to

*justify the additional effort of the shape preserving interpolants.

Storing data in a linked list and the necessary sequential search are

costly and we are investigating more efficient procedures that use the natural

. ordering that already exists. Thus, since for each grid the values are

sequentially stored we can simply store the location of the first value and the

*number of grid elements and use a binary search algorithm to find the

necessary initial conditions.

At the present time, we prescribe internal Dirichlet boundary conditions

by linearly interpolating from coarse to finer grids. A buffer zone of a given

number of elements is added to each end of regions of high error that do not

intersect the boundaries x = a and b. If two buffer zones overlap or are

separated from one another by one element, the two grids are joined.

Similarly, if the buffer is only one element away from either a or b, that

element is added to the grid.

S°.......... . . . . .**



We close this section with three examples using an experimental code

implemented in FORTRAN-77 based on the LRM algorithm described above. All

results were computed in double precision on an IBM 3081D computer.

Example 1. In order to illustrate the importance of adequately resolving

initial conditions at each time step we solve the linear hyperbolic initial value

problem

ut u x:0

(19.19)

u (1/2)(cos(20v(x-0.45)) - 1) , 0.35 < x < 0.75

u(x,0) =u'(x)

(0, otherwise

-•We solve this problem for one coarse time step of At = 0.05, 10 elements on 0

< x < 1 and tol = 0.01. For small enough times the exact solution is u'(x-t).

' If initial conditions are interpolated from the coarse to the fine grid, the

oscillations are missed and an incorrect solution is computed, possibly without

a user realizing that there is anything wrong. However, upon saving initial

. values for the first 8 levels of the tree of grids the correct solution is

calculated to the prescribed accuracy. The incorrect and correct solutions are

*shown at t = 0.05 in Figure 5.

Example 2. We consider the simple heat conduction problem

ut = U xx + f(x,t), t > 0, 0 S x S 1, (19.20)

and select the source term f(x,t) and the initial and Dirichlet boundary

-. conditions so that the exact solution of (19.20) is

r.
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Figure 5. Solution of Example 1 at time t = 0.05 using interpolation

from the coarse grid to the fine grid (top) and saving the initial values

for the first 8 levels of the tree (bottom). The upper solution

overlooks the oscillations and is incorrect.
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u(xt) = tanh(40(x 10t)) (19.21)

This solution represents a steep wave which travels from x 0 to x = I with

speed 10. For times greater than 0.1, the solution is essentially constant with

" value -1. We solved this problem using t S 0.15 with several error

*. tolerances. For each tolerance, we present the number of elements used to

i reach time t = 0.05, the maximum pointwise error, and the error in strain

* energy (cf. Eq. (19.7)) in Table 1. The coarse grid consists of 20 uniform

spatial elements and a time step of 0.05 for each tolerance.

tol No. of Elements I lel1 II let II

0.1 5216 0.153 0.595

0.01 24296 0.0332 0.260

0.001 194672 0.0102 0.239

Table 1. Pointwise error tolerance, number of elements, pointwise error

I tel I., and error in strain energy II tel II at t = 0.05 for Example 2.

Table 1 shows that the number of elements to reach time 0.05 increases

by factors of five and eight for each tenfold decrease in' the tolerance.

- Similarly, the pointwise error decreases by factors of 4.6 and 3.3 for each

tenfold decrease in the tolerance. Note, that we are controlling the local

temporal error and reporting the global error, so we don't expect a

correspondence between the tol and the pointwise error listed in Table 1. If

uniform spatial and temporal refinement were used, we would expect the error

to decrease by ten each time that the mesh was refined by ten. This is

because the computation is dominated by the temporal error for the present
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Figure 7. The grids generated by Example 2 on 0 < x < 1 and
0 <t < 0.15. The initial coarse mesh was 20 by 16 with At z 0.05.
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"" problem. This would necessitate a one-hundred fold increase in the number of

elements. Of course, uniform refinement by the same factors in space and

time would not be judicious for the present methods and problem. Figure 6

shows the solution at t = 0.05 for the three tolerances, 0.1, 0.01, 0.001.

There are spurious oscillations in the solution when tol = 0.1; however, these

S.disappear as tol is decreased. Finally, Figure 7 shows the grids used for tol

= 0.01 and 0 < t < 0.15. We see that fine grids follow the wave across the

interval and are only added to regions containing the wave front.

Example 3. We solve the model combustion problem

ut * u - 2eU =Uxx , O< x < 1 ,0 < t < 1

(19.22)

u(x,0) 0 , u(0,t)=0 , u (1,t) = 0

The exponential nonlinearity is typical in combustion problems having

Arrhenius chemical kinetics. However, in this case the solution develops a

"hot spot" at x = 1 and becomes infinite when t is approximately 0.85. We

solve this problem for t < 0.8 for several tolerances and present the number

* of elements used as a function of the tolerance in Table 2. We begin each

computation with a coarse grid of 20 elements and a time step of 0.05. The

* sequence of grids that were used to solve the problem with a tolerance of

0.001 are shown in Figure 8.

We see that the mesh is initially concentrated in the region near x 0

where the curvature of the solution is largest. As time progresses and the

curvature diminishes, excessive refinement is not necessary. Finally, as the

solution begins to "blow-up" our algorithm generates a fine mesh only in the
" region near x = 1.

if
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* Figure 8. The grids generated by Example 3 on 0 < x < 1 and
0 <t < 0.8. The initial coarse mesh was 20 by 16 with At =0.05.



- -tol No. of Elements

*0.1 68

*0.01 296

0.001 2024

Table 2. Pointwise error tolerance and number of elements at t =0.8

Example 3.

* 4. DISCUSSION

It was our original intent to provide some comparisons of the MOL and

* LRM codes; however, comparing computer codes is a difficult task and great

care is necessary to define appropriate performance measures. Our codes are

still under development and are not ready for the extensive comparison that

* has been performed for ordinary differential equations codes. Comparing

computer times is always difficult in a multi-user environment. It is further

-affected by differences in implementation style and technique. Other

performance measures that seem appropriate are comparing storage

*requirements, the number of finite elements or grids per time step, the

*effectiveness of the error estimators, and the theoretical and observed

convergence rates for each code.

Quite generally, we observe some features, similarities and differences

of the two methods. The MOL uses data structures that are simpler to

implement in FORTRAN. The tree structures and the natural recursive nature

of the LRM are more suited to languages such as PASCAL and LISP, yet

these languages lack several important numerical capabilities and, at least
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, LISP, lacks portability. Different error control mechanisms are used in the

two methods. The ODE integrator in the MOL is provided an error tolerance

related to the spatial error tolerance, but the integrator does not utilize the

fact that the ODEs arise in discretizing a PDE system. This, however, may

not be optimal for some problems which are convection dominated or where

highly local phenomena evolve, and the LRM may be more suitable. The

pattern recognition techniques used in the MOL reduce the need to "back up"

and reintegrate a time step. While there is no essential reason why the MOL

technique could not include the ability to reject time steps, including pattern

recognition in the LRM would destroy the storage and CPU advantages of

using uniform grids. Perhaps, a compromise for LRM would be to use pattern

recognition to determine a best uniform coarse grid for the subsequent time

step. However, since the LRM rejects time steps and has the ability to back

up, it is more difficult to deceive and less sensitive to coarse grid selection.

Since the MOL solves globally in space at every time step, it is never

- concerned with internal boundary conditions. As noted earlier this is an area

of further work for the LRM. The error estimator used in the MOL procedure

depends on the problems having diffusion. One point in favor of Richardson

extrapolation is that it doesn't depend on problem type and this may allow the

LRM to solve hyperbolic or mixed problems. Performance measures are much

easier to specify for the MOL since the temporal error is assumed to be

negligible. This is not true for the LRM and further study is needed to

define quantities equivalent to those used by MOL, e.g., the effectivity

index.

Neither the LRM nor MOL allow for mesh movement and, thus, may not

be optimal for problems where dynamics are important, e.g., flame

.°
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propagation. A MOL approach that included both refinement and mesh

1
movement was studied by Adjerid and Flaherty

In this chapter, two adaptive methods with some similarities and

differences were investigated. It is our intention to further examine the

relationships between these methods and ultimately develop software that

exploits the best features of each.
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